FINAL EXAM (BERGMAN) - ANSWER KEY

PEYAM RYAN TABRIZIAN

(1) (a) Characteristic polynomial: $\lambda^{3}+3 \lambda^{2}-4=(\lambda-1)(\lambda+2)^{2}$

Eigenvalues: $\lambda=1,-2$
Eigenvectors:

$$
\begin{gathered}
\underline{\lambda=1}: \operatorname{Span}\left\{\left[\begin{array}{l}
1 \\
1 \\
3
\end{array}\right]\right\} \\
\underline{\lambda=-2}: \operatorname{Span}\left\{\left[\begin{array}{c}
1 \\
-2 \\
3
\end{array}\right]\right\}
\end{gathered}
$$

(b)

$$
\mathbf{x}(t)=A e^{t}\left[\begin{array}{l}
1 \\
1 \\
3
\end{array}\right]+B e^{-2 t}\left[\begin{array}{c}
1 \\
-2 \\
3
\end{array}\right]+C\left(t e^{-2 t}\left[\begin{array}{c}
1 \\
-2 \\
3
\end{array}\right]+e^{-2 t}\left[\begin{array}{c}
-\frac{1}{3} \\
\frac{5}{3} \\
1
\end{array}\right]\right)
$$

Note: For the last vector, use generalized eigenvectors!
(c) Define $w=u^{\prime}$, then we get:

$$
\left\{\begin{array} { c c }
{ u ^ { \prime } = } & { w } \\
{ w ^ { \prime } = } & { u ^ { \prime \prime } = - u ^ { \prime } - u + v = - u + w + v } \\
{ v ^ { \prime } = } & { 3 u ^ { \prime } + 6 u - 2 v = 6 u + 3 w - 2 v }
\end{array} \quad \Rightarrow \left\{\begin{array}{cc}
u^{\prime}= & w \\
w^{\prime}= & -u+w+v \\
v^{\prime}= & 6 u+3 w-2 v
\end{array}\right.\right.
$$

$$
\text { which gives us the system in }(a) \text {. }
$$

(d)

$$
\mathbf{x}(t)=\frac{1}{4} e^{t}\left[\begin{array}{l}
1 \\
1 \\
3
\end{array}\right]-\frac{1}{6} e^{-2 t}\left[\begin{array}{c}
1 \\
-2 \\
3
\end{array}\right]+\frac{1}{4}\left(t e^{-2 t}\left[\begin{array}{c}
1 \\
-2 \\
3
\end{array}\right]+e^{-2 t}\left[\begin{array}{c}
-\frac{1}{3} \\
\frac{5}{3} \\
1
\end{array}\right]\right)
$$

(2) (a)

$$
W(f, g)=\left|\begin{array}{cc}
f(t) & g(t) \\
f^{\prime}(t) & g^{\prime}(t)
\end{array}\right|=f(t) g^{\prime}(t)-f^{\prime}(t) g(t)
$$

(b) Suppose f and g are linearly dependent.

Then there are constants a and b such that $a f(t)+b g(t)=0$ for all t
Now differentiating this, we get $a f^{\prime}(t)+b g^{\prime}(t)=0$ for all t
In other words, the following equation has a solution for every t :

$$
\left[\begin{array}{cc}
f(t) & g(t) \\
f^{\prime}(t) & g^{\prime}(t)
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

But this means that (for every t), the above matrix is not invertible, hence its determinant is $=0$ (for every t). That is, for every t :

$$
f(t) g^{\prime}(t)-f^{\prime}(t) g(t)=0
$$

Thus, for every t :

$$
W(f, g)=0
$$

(3) (a)

$$
\left\{\begin{array}{cc}
b^{\prime \prime}(y)= & \lambda b(y) \\
a^{\prime}(x) & = \\
\lambda p(x) a(x)
\end{array}\right.
$$

(b)

$$
u(x, y)=e^{\frac{-x^{2}}{2}} \cos (y)
$$

(just choose $\lambda=-1$ and solve the corresponding equation! Also, you're allowed to set your constants to whatever you want them to be!)

$$
\frac{1}{\sqrt{2}}\left[\begin{array}{c}
1 \\
-i \\
0
\end{array}\right], \frac{1}{\sqrt{6}}\left[\begin{array}{l}
1 \\
i \\
2
\end{array}\right]
$$

(5) Ignore this question, it is outside of the scope of this course!
(6) (a)

$$
b_{n}=\frac{4}{\pi m}\left(1-\cos \left(\frac{\pi n}{2}\right)\right)
$$

(b)

$$
u(x, t)=\sum_{m=1}^{\infty} b_{m} e^{-\alpha \pi m t} \sin (\pi m x)=\sum_{m=1}^{\infty}\left(\frac{4}{\pi m}\left(1-\cos \left(\frac{\pi n}{2}\right)\right)\right) e^{-\alpha \pi m t} \sin (\pi m x)
$$

(c)

